Group-Specific Inflation and Households' Choices

Christoph Basten, Merike Kukk, Jan Toczynski

University of Zurich
Annual Conference of the University Research Priority Program (URPP) Financial Market
Regulation

June 13, 2022

Table of contents

- Introduction
- 2 Conceptual framework
- O Data
- 4 Empirical strategy
- Sesults
- 6 Conclusion

Motivation

How does inflation affect households' consumption and financial decisions?

Recent increase in inflation rates in developed countries:

- Long period of expansionary monetary policies;
- Disruptions in global supply chains due to COVID;
- Inflationary pressure from the transition to green economy;
- Shortage of raw materials and agricultural products due to the war;
- ...

Purpose: to investigate how households react to inflation they are exposed to ← observed contemporaneous price changes rather than long-term experiences.

Group-specific inflation

- Inflation heterogeneity across households.
- "Representative" CPI inflation vs. group-specific inflation.

Different groups of households experience different inflation rates based on consumption habits, consumption baskets and life-cycle positions:

- Kaplan & Schulhofer-Wohl (2017) → most variability in a household's inflation rate comes from changes in household-level prices, not from aggregate inflation.
- Hobijn & Lagakos (2005), Jaravel (2021) → Inflation inequality elderly and low income households are more exposed to price increases.

Inflation inequality matters for monetary policy.

Group-specific inflation

Why would contemporaneous observed inflation affect consumption decisions?

Expectations channel

- Adaptive expectations → Malmendier & Nagel (2016) show that households form their inflation expectations from previous experiences in inflation.
- D'Acunto et al. (2019) find that households overweight frequently observed prices (e.g. food prices) when forming inflation expectations.
- \Rightarrow Expect **positive** relationship between inflation and consumption due to intertemporal substitution mechanism.

Group-specific inflation

Why would contemporaneous observed inflation affect consumption decisions?

Money illusion channel

- Consumers misinterpret real and nominal prices growth. E.g. Deaton (1977) → Predicts negative relationship between inflation and consumption (unexpected inflation).
- Can also think of illusion about income (Branson & Klevorick 1969)
 which would imply an opposite effect.

Challenging to distinguish different mechanisms empirically, we estimate the **net effect** of possible channels.

Identification strategy

General idea:

- Use standard consumption function where real consumption responds to the changes in income and wealth (Attanasio and Weber 2010; Jappelli and Pistaferri 2010).
- Add inflation into the model:

$$\Delta \log C_{it} = \Delta \log Inc_{it} + \Delta \log Fin_{it-1} + Infl_{it} + \dots$$
 (1)

How does consumption responds to change in group-specific inflation after controlling for changes in real income and real wealth?

Group-specific inflation calculation

Heterogeneity in experienced inflation due to different consumption baskets:

$$IndCPI_h = \sum_{i=1}^{N} w_{i,h}CPI_{i,h}$$
 (2)

where $w_{i,h}$ is expenditure share of product or product category i in the total consumption basket of a household.

Difficulties - granular data only available recently, most countries have not experienced high inflation in recent years. Data from the current inflation episode mostly not there yet.

Identification strategy

Additional empirical challenges: need enough variation in inflation, the presence of reverse causality and omitted time-varying variables.

- ⇒ We use micro-data from a commercial bank in Estonia.
 - High and volatile inflation in the 2005-2011 period.
 - Small open economy inflation plausibly driven mostly by external factors: Maćkowiak (2007), Aastveit et al. (2016), Jovičić et al. (2017).
 - Panel data → control for time and individual effects.
 - Robustness checks: extensions to baseline model to control for omitted time-varying variables.

Inflation in Estonia - graph

Inflation in Estonia - sub-indices

Data

- 1) Account dataset quarterly account-level data from a large commercial bank, covering around 12% of entire population from 2005 to 2011.
 - Outflows and inflows on checking accounts → proxies for income and spending.
 - Cleaned from transactions between saving and investment accounts, debt repayments, house purchases etc.
 - Balance on checking accounts, term deposits and investment accounts → holding of financial assets.
 - Balance on housing and consumer loans.
 - Socio-economic characteristics: age, gender, region, education.

Data

No consumption shares in account data set to calculate groups-specific inflation \rightarrow We impute the weights of consumption categories based on households' characteristics.

2) Household Budget Survey (HBS)

- Household level data containing detailed data on consumed goods and services.
- We use data on households' consumption expenditures 12 consumption categories (e.g. food, transport, accommodation ...).
- Rich set of socio-economic characteristics.

Consumption shares imputation

Imputation strategy takes into account characteristics of the weights of consumption categories:

- Weights need to be non-negative, between 0 and 1, and add up to 1.
- → Multinomial Fractional Logit (MFL); non-linear simultaneous estimation of the vector of weights.

$$E[w_{i,h}|X_h] = \frac{e^{\beta_i X_h}}{\sum_{k=1}^{N} e^{\beta_k X_h}},$$
 (3)

where X_h is a vector of explanatory variables and $w_{i,h}$ is a vector of consumption weights.

Empirical approach

Step 1 - estimate the MFL model of consumption shares on HBS data using characteristics X_h and obtain the vector of parameters $\hat{\beta}$.

Step 2 - using estimated $\hat{\beta}$ to calculate consumption shares $\hat{w_{i,h}}$ using account level data.

Step 3 Calculate household-specific price index:

$$IndCPI_{it} = \sum_{cat=1}^{12} \hat{w}_{cat,i,t-1}CPI_{cat,t}.$$
 (4)

NB! The weights are one period lagged.

Step 4 Calculate quarterly inflation from individual CPI.

Due to imputation we obtain a proxy for personally experienced inflation → group-specific inflation.

Group-specific experienced inflation - distribution

Empirical approach

Estimate empirical model from account-level data:

$$\Delta \ln C_{it} = \beta_1 \Delta \ln Inc_{it} + \beta_2 \Delta \ln Fin_{it-1} + \beta_3 IndInfl_{it} + \lambda_i + \gamma_t + \epsilon_{it} \quad (5)$$

- Quarterly panel data → Individual and time FE included.
- The estimated coefficient β_3 captures the response of consumption to the group-specific experienced inflation conditional on the value of headline inflation.
- Interpretation: redistribution of consumption between more and less inflation-exposed households' groups.

Results 1) - Main model

Table: Individual experienced inflation and consumption growth

	Dependent variable: $\Delta \log C_{it}$		
	(1)	(2)	
IndInf _{it}	0.057*** (0.004)	0.026*** (0.002)	
$IndInf_{it}^2$		0.025*** (0.001)	
$\Delta \log { m Inc}_{it}$	0.480*** (0.006)	0.480*** (0.006)	
$\Delta \log Fin_{i,t-1}$	0.108*** (0.002)	0.108*** (0.002)	
Constant	-0.035*** (0.003)	-0.025*** (0.003)	
Household FE Time FE Observations Within R ² Groups	Yes Yes 2,179,552 0,207 89,507	Yes Yes 2,179,552 0.208 89,507	

Positive relationship between experienced inflation and consumption \rightarrow expectations channel?

Results 2) - Large purchases

$$Logit(LargePurchase_{it}) = \beta_1 IndInf_{it} + \beta_2 X_{it} + \lambda_i + \gamma_t + \epsilon_{it}$$
 (6)

Table: Large purchases - odds ratios from panel logit model

	De	Dependent variable: DurablePurchase		
	(1) > 50%	(2) > 75%	(3) > 100%	
IndInf _{it}	1.227*** (0.015)	1.302*** (0.020)	1.371*** (0.028)	
$\Delta \log { m Inc}_{it}$	2.717*** (0.014)	3.125*** (0.020)	3.388*** (0.027)	
$\Delta \log Fin_{it-1}$	1.313*** (0.003)	1.358*** (0.005)	1.385*** (0.006)	
Household FE Time FE Observations Groups	Yes Yes 1,611,387 66,218	Yes Yes 1,147,872 47,218	Yes Yes 785,039 32,324	

 $[\]Rightarrow$ "Durable" consumption positively affected by experienced inflation.

Results 3) - How do households finance consumption?

$$Logit(NewLoan_{it}) = \beta_1 IndInf_{it} + \beta_2 X_{it} + \lambda_i + \gamma_t + \epsilon_{it}$$
 (7)

Table: Taking out new or additional loans - odds ratios from panel logit model

	Housing Loan	Consumer Loan
IndInf _{it}	0.985 (0.040)	1.069*** (0.031)
$\Delta \log {\operatorname{Inc}}_{it}$	1.246*** (0.020)	1.000 (0.013)
$\Delta \log Fin_{it-1}$	1.017*** (0.006)	0.995 (0.005)
Household FE Time FE Observations Groups	me FE Yes Yes servations 260,030 433,375	

 \Rightarrow Experienced inflation increases the odds ratio of taking out a consumer loan but not a housing loan.

Results 4) - How do households finance consumption?

Table: Experienced inflation and the balance of savings products

	Checking account	Term deposit	Securities
IndInf _{it}	0.000 (0.006)	-0.045*** (0.013)	0.023* (0.013)
$\Delta \log { m Inc}_{it}$	0.944*** (0.013)	0.195*** (0.006)	-0.027** (0.009)
$\Delta \log Term_{i,t-1}$	0.048*** (0.001)		0.007** (0.003)
$\Delta \log Curr_{i,t-1}$		0.074*** (0.004)	0.023*** (0.003)
$\Delta \log Sec_{i,t-1}$	0.023*** (0.003)	0.005 (0.005)	
Household FE Time FE Observations Groups	Yes Yes 2,178,027 89,454	Yes Yes 539,668 22,484	Yes Yes 161,859 7,063

⇒ Households reduce their savings on term deposits in response to high observed inflation.

Results 5) - Heterogeneity by debt status

Table: Debt and consumption

	Total debt	Housing debt	Consumer debt	
IndInfit	0.057*** (0.004)	0.058*** (0.004)	0.057*** (0.004)	
$\Delta \log Inc_{i,t}$	0.476*** (0.006)	0.477*** (0.006)	0.477*** (0.006)	
$\Delta \log {\operatorname{Inc}}_{i,t} \times {\operatorname{IndInf}}_{it}$	0.003*** (0.001)	0.003*** (0.001)	0.003*** (0.001)	
$\Delta \log Fin_{it-1}$	0.109*** (0.002)	0.109*** (0.002)	0.109*** (0.002)	
$\Delta \log Fin_{it-1} \times \mathit{IndInf}_{it}$	-0.000 (0.000)	-0.000 (0.000)	-0.000 (0.000)	
Debt _{it}	-0.020*** (0.002)	-0.027*** (0.002)	-0.026*** (0.002)	
$Debt_{it} imes \mathit{IndInf}_{it}$	0.007*** (0.001)	0.007*** (0.001)	0.004*** (0.001)	
Household FE Time FE Observations R2	Yes Yes 2,179,552 0.198	Yes Yes 2,179,552 0.198	Yes Yes 2,179,552 0.198	

Inflation and debtor interaction is positive \Rightarrow Households increase consumption in response to higher inflation more when they are indebted.

Robustness

Main identification problem for causal interpretation: endogeneity of consumption weights.

- Groups with different consumption bundles might have different consumption dynamics.
- Robustness 1: include group specific dynamics in the consumption.
- Robustness 2: time varying individual effects → interactive fixed effects (Bai 2009).

Other robustness checks:

 Additional robustness estimations with different set of regressors in the imputation model.

Conclusion

- Main message: inflation heterogeneity matters for consumption dynamics.
- Groups experiencing higher inflation increase their consumption → 1% increase in quarterly experienced inflation corresponds to almost 6% increase in real consumption.
- Increased consumption is financed by combination of borrowing and drawing on savings.
- Results consistent with inter-temporal substitution and experienced inflation affecting expectations (additional exercise using group-level expectations from ECB's business and consumer surveys series).
- \bullet Heterogeneity across age and income groups \rightarrow policy implications.

Conclusion

THANK YOU! QUESTIONS?

References I

- Aastveit, K. A., Bjørnland, H. C. & Thorsrud, L. A. (2016), 'The world is not enough! small open economies and regional dependence', *The Scandinavian Journal of Economics* **118**(1), 168–195.
- Bai, J. (2009), 'Panel data models with interactive fixed effects', *Econometrica* **77**(4), 1229–1279.
- Branson, W. H. & Klevorick, A. K. (1969), 'Money illusion and the aggregate consumption function', *The American Economic Review* **59**(5), 832–849.
- Deaton, A. (1977), 'Involuntary saving through unanticipated inflation', *The American Economic Review* **67**(5), 899–910.
- D'Acunto, F., Malmendier, U., Ospina, J. & Weber, M. (2019), Exposure to daily price changes and inflation expectations, Technical report, National Bureau of Economic Research.
- Hobijn, B. & Lagakos, D. (2005), 'Inflation inequality in the united states', *Review of Income and Wealth* **51**(4), 581–606.
- Jovičić, G., Kunovac, D. et al. (2017), What is driving inflation and gdp in a small european economy: the case of croatia, Technical report.

References II

- Kaplan, G. & Schulhofer-Wohl, S. (2017), 'Inflation at the household level', *Journal of Monetary Economics* **91**, 19–38.
- Maćkowiak, B. (2007), 'External shocks, us monetary policy and macroeconomic fluctuations in emerging markets', *Journal of monetary economics* **54**(8), 2512–2520.
- Malmendier, U. & Nagel, S. (2016), 'Learning from inflation experiences', *The Quarterly Journal of Economics* **131**(1), 53–87.

Experienced inflation

Results 1) - by income groups

Table: Individual experienced inflation and consumption by income group

		Dependent variable: $\Delta \log C_{it}$ by income group (quantile)			
	Q1	Q2	Q3	Q4	Q5
IndInf _{it}	0.104***	0.114***	0.108***	0.098***	0.056***
	(0.012)	(0.009)	(0.008)	(0.008)	(0.005)
$\Delta \log \operatorname{Inc}_{it}$	0.572***	0.497***	0.451***	0.432***	0.463***
	(0.011)	(0.007)	(0.006)	(0.008)	(0.008)
$\Delta \log Fin_{it}$	0.119***	0.103***	0.101***	0.104***	0.113***
	(0.003)	(0.002)	(0.002)	(0.002)	(0.003)
Household FE Time FE Observations R ² Groups	Yes	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes	Yes
	441,136	439,780	438,166	435,508	424,962
	0.237	0.210	0.194	0.190	0.209
	17,830	18,049	18,241	18,370	18,485

 $[\]Rightarrow$ The highest income group responds to the individual inflation the least. The results with lagged coefficients provide evidence for intertemporal substitution in this group.

Results 1) - by age groups

Table: Individual experienced inflation and consumption by age group

		Dependent variable: $\Delta \log c_{it}$ by age group (years of age)			
	(20-29)	(30-39)	(40-49)	(50-59)	(60-70)
IndInf _{it}	0.074***	0.083***	0.076***	0.107***	0.147***
	(0.007)	(0.008)	(0.007)	(0.009)	(0.017)
$\Delta \log {\sf Inc}_{it}$	0.561***	0.506***	0.450***	0.424***	0.392***
	(0.012)	(0.009)	(0.008)	(0.007)	(0.011)
$\Delta \log Fin_{it}$	0.112***	0.105***	0.101***	0.105***	0.132***
	(0.003)	(0.003)	(0.003)	(0.003)	(0.006)
Household FE Time FE Observations R ² Groups	Yes	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes	Yes
	374128	517658	537281	526338	224147
	0.313	0.256	0.207	0.157	0.107
	15474	21443	22040	21429	9121

 \Rightarrow The oldest age group responds the strongest to the current inflation while they have also experienced hyperinflation in the beginning of 90s.

Results robustness - group specific consumption dynamics

Table: Robustness - group specific trends

	Dependent variable: $\Delta \log C_{it}$			
	(1)	(2)	(3)	(4)
IndInf _{it}	0.060***	0.090***	0.094***	0.151***
	(0.004)	(0.004)	(0.004)	(0.005)
Controls	Yes	Yes	Yes	Yes
Household FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
Gender#Time FE Age#Time FE Income#Time FE Income#Age#Time FE Observations	Yes	No	Yes	No
	No	Yes	No	No
	No	No	Yes	No
	No	No	No	Yes
	2179552	2179552	2179552	2179552

 \Rightarrow Results robust to exploiting only within-group variation in experienced inflation along most "suspicious" dimensions.

Results robustness - interactive fixed effects

Table: Interactive fixed effects regressions

	Dependent variable: $\Delta \log C_{it}$			
	FE	IFE	IFE	IFE
IndInf _{it}	0.058***	0.060***	0.053***	0.051***
	(0.004)	(0.004)	(0.004)	(0.004)
$\Delta \log \operatorname{Inc}_{it}$	0.479***	0.501***	0.504***	0.511***
	(0.006)	(0.006)	(0.006)	(0.006)
$\Delta \log Fin_{i,t-1}$	0.108***	0.108***	0.106***	0.106***
	(0.002)	(0.002)	(0.002)	(0.002)
Constant	-0.071***	-0.074***	-0.066***	-0.063***
	(0.005)	(0.004)	(0.004)	(0.004)
Household FE Time FE IFE Factors Observations	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
	No	Yes	Yes	Yes
	×	1	2	3
	1089965	1089965	1089965	1089965

 \Rightarrow Results are robust to controlling for unobserved time-varying individual factors.

Inflation perceptions and expectations

Table: Inflation perceptions and expectations

	Е	Dependent variable: 12	ons	
	Age	Income	Gender	Education
12 month perception	0.437***	0.604***	0.385***	0.156
	(0.115)	(0.075)	(0.075)	(0.106)
Time FE	Yes	Yes	Yes	Yes
Cohort FE	Yes	Yes	Yes	Yes
Observations	104	104	104	104

Source: ECB business and consumer survey series. Inflation perceptions strongly correlate cross-sectionally with expectations.